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ABSTRACT

In this article, we propose a numerical implementation of
Gauss-Newton’s method for optimization in diffeomorphic
registration in the Large Deformation Diffeomorphic Met-
ric Mapping framework. The computations of the Gâteaux
derivatives of the objective function are performed in the tan-
gent space of the Riemannian manifold of diffeomorphisms.
The resulting algorithm has been compared to gradient de-
scent optimization in brain MRI anatomical images. The
experiments have shown similar accuracy for both techniques
at steady-state while Gauss-Newton has resulted to be more
robust with a faster rate of convergence.

Index Terms— Diffeomorphic registration, optimization
methods, Gauss-Newton, Hilbert spaces

1. INTRODUCTION

Image registration is usually de ned as a variational problem
involving the metric that measures the image matching after
registration and a regularization constraint in the geometric
transformation that maps the source into the target. Numeri-
cal optimization techniques play a crucial role in order to nd
the optimal transformation that minimizes the objective func-
tion [1].

In diffeomorphic registration transformations are usually
assumed to belong to a Riemannian manifold of diffeomor-
phisms. The majority of the approaches have focused on
the characterization of the diffeomorphic transformations
in the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) framework [2, 3, 4]. Much less attention has been
paid to the optimization strategy where classical gradient
descent method is often used.

Recently, Ashburner et al. have proposed a numerical
implementation of Gauss-Newton’s method for the LDDMM
variational problem [5]. The computations of the Gâteaux
derivatives of the objective function are performed in the
space of L2-functions. In consequence, the action of the
linear operator involved in the regularization term has to be
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formulated using the matrix representation of the convolu-
tion. As a result, the algorithm results into a high dimen-
sional matrix inversion problem [1]. Although there exist
well known multi-grid techniques to numerically solve these
problems [6], the memory requirements for diffeomorphic
registration hinders their execution in standard machines.
Moreover, multi-grid schemes need the de nition of the
injection and the interpolation operators associated to the
elements involved in the registration in order to compute ne-
to-coarse and coarse-to- ne samplings. In the case of images,
downsampling and linear interpolation are good candidates
for these operators. In the case of diffeomorphic transforma-
tions, however, the de nition of these operators remains an
open question.

In this article we propose an alternative numerical imple-
mentation of Gauss-Newton’s method for LDDMM registra-
tion. The computations of the Gâteaux derivatives of the ob-
jective function are performed in the tangent space of the Rie-
mannian manifold of diffeomorphisms. This way, the action
of the linear operator involved in the regularization term can
be directly formulated using convolution. As a result, this al-
gorithm results into a 3 dimensional problem for each point in
the computation domain and can be executed in standard ma-
chines. The resulting algorithm has been compared to gradi-
ent descent optimization in a database of brain MRI anatom-
ical images. The experiments have shown similar accuracy
for both techniques at steady-state while Gauss-Newton has
resulted to be more robust with a faster rate of convergence.

The rest of the article is divided as follows. In Section 2
we brie y revisit the framework for diffeomorphic registra-
tion and derive the computations for Gauss-Newton’s method.
In Section 3 we present and discuss the experimental results.
Finally, Section 4 presents some concluding remarks.

2. METHOD

2.1. Diffeomorphic registration

In LDDMM diffeomorphic registration, transformations are
usually assumed to belong to a group of diffeomorphisms
Diff(Ω) (i.e. differentiable maps ϕ : Ω → Ω with differ-
entiable inverse) endowed with a Hilbert differentiable struc-
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ture of Riemannian manifold. The tangent space V is the set
of Sobolev class vector elds in Ω. The Riemannian metric is
de ned from the scalar product 〈v, w〉V = 〈Lv, Lw〉L2 where
L is a linear invertible differentiable operator.

Diffeomorphic registration from a template image I0 to a
target I1 is represented by the end point ϕ = φ(1) of a path
of diffeomorphisms φ(t) starting at the identity element and
resulting from the minimization of the energy functional

E(ϕ) = E(φ)2 +
1
σ2

‖I0 ◦ ϕ−1 − I1‖2
L2 (1)

where the term E(φ)2 imposes a regularization in the path
energy and the L2 norm measures the matching between the
images after registration. The factor 1/σ2 balances the energy
contribution between regularization and matching.

In this article, diffeomorphic transformations are param-
eterized using stationary vector elds [7, 4]. The stationary
parameterization is closely related to the group structure de-
ned in Diff(Ω) as the paths starting at the identity that

can be parameterized using stationary vector elds are exactly
the one-parameter subgroups. Diffeomorphisms belonging to
one-parameter subgroups can be computed from the group
exponential map Exp : V → Diff(Ω). The path energy
is de ned from the metric associated to the in nitesimal gen-
erator E(φ)2 = ‖w‖2

V , where φ(1) = Exp(w). Therefore,
diffeomorphic registration is posed from the minimization of
the energy functional

E(w) = ‖w‖2
V +

1
σ2

‖I0 ◦ Exp(w)−1 − I1‖2
L2 (2)

2.2. Gauss-Newton’s method

Let E(w) be a twice Frechet differentiable energy functional
de ned in a general convex vector space V . Second order
optimization techniques are obtained from the second order
Taylor approximation

E(w + h) ∼= E(w) + 〈∇wE(w), h〉V +
1
2
〈h, HwE(w)h〉V

(3)
where ∇wE(w) and HwE(w) are the Frechet differentials
de ned in V .

Newton’s method is the most popular second order opti-
mization technique. The minimization of E(w) is approached
with an iterative scheme

wk+1 = wk − ε · HwE(wk)−1 · ∇wE(wk) (4)

where the search direction exploits not only the gradient but
also the Hessian structure thus providing a faster rate of con-
vergence than methods just based on the gradient.

The Gâteaux derivative of an energy functional E(w)
along h ∈ V is de ned as its variation under the perturba-
tion of w in the direction of h, ∂hE(w). The second order
Gâteaux derivative, ∂hhE(w) is computed recursively from

the rst order derivative. In Frechet spaces, the gradient oper-
ator relates the Frechet differential and the Gâteaux derivative
(whenever both derivatives exist) by

∂hE(w) = 〈∇wE(w), h〉V (5)

The Hessian operator relates the second order Frechet differ-
ential and the second order Gâteaux derivative by

∂hhE(w) = 〈h, HwE(w) h〉V (6)

Using Gâteaux derivatives, the computations of New-
ton’s equations for the energy functional de ned in Equa-
tion 2 can be derived. For simplicity, we divide E(w) =
E1(w)+ 1

σ2 E2(w) where E1(w) = ‖w‖2
V and E2(w) = ‖I0◦

Exp(w)−1 − I1‖2
L2 , and compute ∂hEi(w) and ∂hhEi(w),

i = 1, 2 separately. Straightforward computations provide
the derivatives related to E1

∂hE1(w) = 2〈w, h〉V ∂hhE1(w) = 2〈h, h〉V (7)

The rst and second order variations of E2(w) in the direc-
tion of h are computed using the chain rule in L2 and pro-
jecting the results into the space V using the inverse of op-
erator L. In the computations, the Gâteaux derivative of the
exponential map is computed using a rst order approxima-
tion [4]. In order to simplify the notation, let denote with
r = I0 ◦ Exp(w)−1 − I1 the residual function associated
to E2(w), J = ∇(I0 ◦ Exp(w)−1) the gradient and H =
Hess(I0 ◦ Exp(w)−1) the Hessian matrix associated to the
transformed template. With this notation,

∂hE2(w) = −2〈r J, h〉L2 = −2〈(L†L)−1(r J), h〉V
∂hhE2(w) = 2〈h, (JT · J + r H) · h〉L2

= 2〈h, (L†L)−2(JT · J + r H) · h〉V (8)

and Newton’s equations can be obtained from the combina-
tion of Equation 4 to Equation 8.

In practice, the computation of the Hessian HwE(w) =
2IR3 + 2

σ2 (L†L)−2(JT · J + r H) often leads to numerical
problems as the term JT · J + r H is not always guaranteed
to be positive de nite during optimization. Gauss-Newton’s
method is often used as a simpli cation of Newton’s method
that overcomes this limitation using a linear approximation of
this term. Thus, Gauss-Newton’s method for the minimiza-
tion of E(w) is approached with the iterative scheme

wk+1 = wk − ε ·
(

2 IR3 +
2
σ2

(L†L)−2(JT · J)
)−1

·
(

2 w − 2
σ2

(L†L)−1(r J)
)

(9)

3. RESULTS AND DISCUSSION

In this section we have evaluated the in uence of optimization
in LDDMM diffeomorphic registration (Equation 2). To this

1084



end, we have compared Gauss-Newton’s method (GN) with
gradient descent (GD) [4] in terms of accuracy, robustness,
and ef ciency. The study has been performed in a popula-
tion of 18 T1-MRI brain anatomical images. Optimization
results have been analyzed at three different resolution levels.
In order to make results comparable, the same initialization
(w(0) = 0) has been selected for each level.

The iterative schemes corresponding to GN and GD can
be included into the general formulation wk+1 = wk − ε ·
d(wk) where d(wk) is the search direction at iteration k and
ε controls the step size made along this direction. During op-
timization, the selection of the parameter ε is critical as it can
determine the convergence of the algorithm. For example, if
ε is selected to be too big, the step made along the search
direction may not provide a step minimizing the energy. Oth-
erwise, if ε is selected to be too small the algorithm may get
trapped into a local minimum far from the global minimum.

In these experiments, a backtracking line-search strategy
starting from an initial guess ε0 has been used. In each itera-
tion the step size ε has been selected to be the rst parameter
that provides a suf cient decrease in the energy according to
Armijo’s condition [8]. In the case of GN method, ε0 has
been selected to be equal to 1. Thus, GN optimization shows
a superlinear rate of convergence. In GD method, the search
of ε can be quite expensive, specially if the guess for ε0 is far
from the optimal value. For this reason, the value of ε0 for the
current iteration has been selected to be the estimated ε in the
previous iteration.

In practice, the algorithms are considered to converge ac-
cording to criteria that compromises between the number of
iterations and maximum energy decrease. In these experi-
ments, however, the algorithms are considered to converge
only if Armijo’s condition does not hold for any big enough
ε or the number of elapsed iterations exceeds a threshold (in
our case, 1000). Thus, convergence properties of both opti-
mization methods can be fully studied.

3.1. Accuracy

Table 1 shows the number of iterations, the values of the en-
ergies involved in the objective function (Equation 2) and the
relative sum of squared differences between the images at
convergence. Table 2 shows the extrema of the Jacobian de-
terminant of the resulting diffeomorphic transformation. Fig-
ure 1 shows the average curve of the image matching dur-
ing optimization. The bars indicate the standard deviation
through the database of patients. From these results, it can be
seen that both optimization techniques provide similar reg-
istration results at convergence although GN shows a faster
convergence rate than GD.

3.2. Robustness

Figure 2 shows some representative examples of the image
matching curve during optimization. While GN shows a

Table 1. Average and standard deviation of the number of iterations, # it,
the energy associated to the diffeomorphic transformation, ‖ · ‖V , the image
matching, ‖ · ‖L2 , and the relative sum of squared differences, RSSD, at
convergence. Level 0 corresponds to the nest resolution level.

level # it ‖ · ‖V ‖ · ‖L2 RSSD (%)

2 170.58± 10.42 63.25± 5.30 10.49± 1.65 16.35± 1.01

GN 1 793.52± 37.15 258.48± 12.77 8.74± 1.06 11.37± 0.28

0 777.29± 26.25 516.34± 13.68 14.17± 0.77 14.06± 1.32

2 222.11± 10.79 63.52± 6.08 10.78± 1.79 16.29± 1.22

GD 1 896.58± 58.45 259.23± 14.20 8.69± 1.02 11.31± 0.33

0 648.00± 31.62 499.68± 15.38 12.42± 0.91 13.36± 1.23

Table 2. Average and standard deviation of the extrema and the 0.2%
quantiles of the Jacobian determinant associated to diffeomorphism ϕ at con-
vergence. Level 0 corresponds to the nest resolution level.

level Jmin J0.2% Jmax J99.8%

2 0.04± 0.02 0.14± 0.07 10.78± 4.24 3.55± 0.61

GN 1 0.03± 0.01 0.12± 0.02 15.39± 12.07 3.62± 0.67

0 0.08± 0.03 0.22± 0.06 11.05± 12.59 2.8± 0.38

2 0.05± 0.03 0.14± 0.08 10.82± 4.13 3.61± 0.62

GD 1 0.04± 0.01 0.12± 0.03 14.87± 11.93 3.52± 0.63

0 0.11± 0.02 0.27± 0.03 8.25± 8.80 2.74± 0.28

monotone decreasing convergence, GD is frequently prone to
get trapped into local minima during a considerable number
of iterations. Besides, GN shows a faster convergence rate
than GD specially at the coarsest resolution levels and the
initial iterations of the algorithm. Therefore, GN results a
more appropriate optimization technique for diffeomorphic
registration than GD, specially for multiresolution versions
of the algorithm.

3.3. Ef ciency

Memory requirements for GN and GD for a volume of size
155× 205× 170 are equal to 1027 and 802 MB, respectively.
Figure 3 shows the average curve of the elapsed time for each
iteration. The bars indicate the standard deviation through the
database of patients. Although the computation of the search
direction d(wk) is more expensive for GN than for GD (31.92
vs 20.44 seconds in the nest resolution level in a 2.336 GHz
machine), the line search results more expensive for GD, spe-
cially at the initial iterations of the algorithm. On the whole,
GN results into a much more ef cient implementation.

4. CONCLUSION

We have presented a numerical implementation of Gauss-
Newton’s method for diffeomorphic registration. The algo-
rithm has been compared to gradient descent in a database of
T1-MRI brain anatomical images. The results have shown
that both algorithms provide similar accuracy while Gauss-
Newton is more robust and ef cient. Hence Gauss-Newton
provides a more appropriate optimization technique for dif-
feomorphic registration, specially for multiresolution ver-
sions of the algorithm.
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Fig. 1. Average and standard deviation of the image matching curve, ‖I0 ◦ ϕ−1 − I1‖2
L2 , during optimization.
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Fig. 3. Average and standard deviation of the time curve during optimization.
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Fig. 2. Representative examples of the image matching
curves during optimization.
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